| |||||||
Главная
| Новости FX CLUB
| | |||||||
Поиск информации по сайту:
Пользовательского поиска
Регрессионный анализ
Рассмотрим область регрессионного анализа, решающего вопросы формы связей. В математической статистике форма связи рассматривается как некая тенденция в изменениях изучаемого признака, складывающаяся в зависимости от изменения признака-фактора. При отображении на графиках изменений признака, коррелируемого с признаком-фактором, получаем линии регрессии (или графическое изображение изменений средних значений одной из случайных переменных, которые происходили бы с изменением значений другой переменной, если бы влияние иных посторонних причин оказалось бы неизменным или на одном и том же среднем уровне для всех случаев наблюдения). Известный российский статистик H.К. Дружинин отмечал следующую тенденцию: "Связь корреляционная превращается здесь как бы в функциональную зависимость, которой формально соответствуют и математические уравнения регрессии... Уравнение связи не может рассматриваться с точки зрения причинно-следственных отношений... Это уравнение, как и все показатели тесноты корреляционной связи, свидетельствует лишь о связи между изучаемыми признаками, проявляющейся в их совместном варьировании". Если тенденция представляет собой равномерное возрастание или убывание значений исследуемого признака, то корреляционная связь называется прямолинейной, при тенденции неравномерных изменений – криволинейной. Поиск тенденции (теоретической линии регрессии) производится с помощью различных алгебраических уравнений, при решении которых выявляются значения коэффициентов регрессии. Регрессионный анализ отражает движение, изменения, процессы, а регрессионные модели строятся с учетом результатов корреляционного анализа. Продолжение >>> Регрессия прямолинейная |
|||||||
Главная Софт Литература Читайте на сайте Контакты Copyright © 2007 fx-trader.ru |