Нормальное распределение
Это
один из возможных профилей распре деления случайной величины. Он характерен
именно для биномиальной модели.
Для простоты изложения ограничимся только
определениями.
Во-первых, функция f ( x ) = 1: (2я)0,5хе°5хх2)
по определению называется плотностью вероятности нормального распределения,
где постоянные тс = 3,14 ие = 2,71.
Эта функция показывает, каким образом
изменяется вероятность события по мере его удаления от математического
ожидания.
Нормальной функцией распределения, или
распределением Гаусса, является интеграл этой функции, определенный для
значений х от минус бесконечности до х (это означает — все возможные варианты удаления
события от математического ожидания):
Можно убедиться, что нормальным в указанном
математическом смысле является такой разброс результатов, при котором:
•
99,99% всех данных попадают в пределы 4 стандартных отклонений;
•
99,86% — в пределы трех стандартных отклонений;
•
97,72% — двух стандартных отклонений;
•
84,13% — одного стандартного отклонения.
Данный эталон (или стандарт) нормальности
можно использовать при анализе экспериментально полученного распределения.
Нормальное распределение случайной величины
характеризуется совершенно определенными «нормами» разбросов исходов
результатов испытаний по отношению к математическому ожиданию.
Для нас важно то, что именно таким
распределением отличаются пуассоновские случайные процессы.
В практическом плане интерес представляет
оценка вероятности следующего события:
• число успехов в ходе биномиальных
испытаний лежит в каких-то определенно заданных пределах.
Если такие пределы выражать в числе
стандартных отклонений, то соответствующие оценки можно получить,
воспользовавшись теоремой Чебышева.
Теорема (неравенство) Чебышева. В сравнении
с распределением Гаусса эта теорема дает очень грубое приближение. Но зато она
удобна в применении, поскольку позволяет сделать это быстро, не прибегая к
обращению к сложным таблицам.
Согласно данной теореме, вероятность
отклонения любой случайной величины к от среднего значения к( ср) в ту или иную
сторону на расстоянии не более чем п раз по s (где п — положительное число) не
меньше:
Диапазон отклонения значений к можно
определить в виде неравенства:
Если задать п , то получим следующие оценки:
• для п = 3 (три стандартных отклонения в
каждую сторону) с уверенностью не менее чем 89% следует ожидать, что все
значения случайной величины будут содержаться в пределах
(к( ср) - 3 s ) < к < (к(ср) + 3 s );
• для п = 2 — с уверенностью не менее 75%,
все значения случай
ной величины будут содержаться в пределах
(к( ср) - 2 s ) < к < (к(ср) + 2 s );
• для п = 1 — нет никакой уверенности, что
все значения случай
ной величины будут содержаться в пределах
(к( ср) - s ) < к < (к(ср) + s ).
Это позволяет соответствующим образом
оценить получаемые экспериментальные результаты и увидеть, насколько они
укладываются в схему идеальной монеты.
В нормальном распределении (чистая
случайность) чем больше число стандартных отклонений, тем меньше вероятность
того, что результаты экспериментальных испытаний выйдут за установленные
пределы.
При «чисто» случайных испытаниях чем больше
взятое число стандартных отклонений, тем меньше вероятность выхода за эти
пределы.
Вместе с тем, следует понимать
вероятностно-статистический характер этой закономерности. Она описывает не
какую-то конкретную серию испытаний, а лишь указывает общую тенденцию, которая
должна проявляться по итогам ряда экспериментов, повторяемых в одинаковых
условиях.
Статья размещена в рубрике: Шансы трейдера на выигрыш
|