Главная | Новости FX CLUB | Торговые условия | Торговые платформы | Обучение трейдингу
О компании
Торговые условия
Открыть демо-счет
Открыть реальный счет
Ввод средств на счет
Вывод средств со счета
Торговая платформа
  Торговые платформы
Платформа Libertex
Платформа MetaTrader4™
Платформа Rumus
  Аналитика
Видеообзор рынков
Видео от FX CLUB
Аналитика Forex
Экономический календарь
  Обучающие материалы
Обучение Forex
Статьи форекс
Статьи forex











 





Поиск информации по сайту:
Пользовательского поиска

Одиночная короткая позиция по опциону

Все сказанное по поводу одиночной длинной опционной позиции остается верным и для одиночной короткой опционной позиции. Единственное отличие заключается в ином написании уравнения (5.14):

(5.14)       HPR(T, U) = (1 + f * (Z(T, U - Y) / S - 1)) Л P(T, U), где   HPR(T, U) = НРR для данного тестируемого значения Т и U;

f = тестируемое значение f;

S = текущая цена опциона;

Z(T, U - Y) = теоретическая цена опциона, когда цена базового инструмента равна

U - Y, а время, оставшееся до срока истечения, равно Т, Р(Т, U) = вероятность того, что базовый инструмент равен U, когда время,

оставшееся до истечения срока исполнения, равно Т; Y = разность между арифметическим математическим ожиданием базового инструмента (согласно уравнению (5.10)) и текущей ценой.

Для одиночной короткой опционной позиции это уравнение преобразуется в:

HPR для данного тестируемого
значения

где     HPR(T, U) == HPR для данного тестируемого значения Т и U; f= тестируемое значение f; S = текущая цена опциона;

Z(T, U - Y)= теоретическая цена опциона, когда цена базового инструмента равна U - Y, а время, оставшееся до срока истечения, равно Т;

Р(Т, U) = вероятность того, что базовый инструмент равен U, когда время, оставшееся до истечения срока исполнения, равно Т,

Y = разность между арифметическим математическим ожиданием базового инструмента (согласно уравнению (5.10)) и текущей ценой.

Обратите внимание, что единственным отличием уравнения (5.14) для одиночной длинной опционной позиции от уравнения (5.20) для одиночной короткой позиции является выражение (Z(T, U-Y)/S-1), которое заменяется на (1-Z(T, U - Y) / S). Все остальное в отношении одиночной длинной опционной позиции верно и для одиночной опционной короткой позиции.

Одиночная позиция по базовому инструменту

В главе 3 мы подробно рассмотрели математику поиска оптимального f параметрическим способом. Теперь мы можем использовать тот же метод и для одиночной длинной опционной позиции с учетом нового HPR, которое рассчитывается по уравнению (3.30):

(3.30)        HPR(U) = (1+ (L/W/-f)))) л Р,

где HPR(U) = HPR для данного U;

L= ассоциированное P&L;

W = ассоциированное P&L худшего случая (это всегда отрицательное значение);

f == тестируемое значение f;

Р = ассоциированная вероятность.

Для длинной позиции переменная L, т. е. ассоциированное P&L, определяется как разность между ценой базового инструмента U и ценой S.

(5.21 а)   L для длинной позиции = U - S

Для короткой позиции ассоциированное P&L рассчитывается наоборот:

(5.216)   L для короткой позиции = S - U,

где   S = текущая цена базового инструмента; U = цена базового инструмента для данного HPR.

Мы можем также рассчитать оптимальное f для одиночной позиции по базовому инструменту, используя уравнение (5.14). При этом надо иметь в виду, что оптимальное f может получиться больше 1.

Пусть цена базового инструмента равна 100, и мы ожидаем пять результатов:

Результат

Вероятность

P&L

110

0,15

10

105

0,30

5

100

0,50

0

95

0,25

-5

90

0,10

-10

Отметьте, что исходя из уравнения (5.10) наше арифметическое математическое ожидание по базовому инструменту составляет 100,576923077. Это означает, что переменная Y для (5.14) равна 0,576923077, так как 100,576923077-100= = 0,576923077. Если рассчитать оптимальное f, используя столбец P&L и уравнение (3.30), мы получим f= 1,9, что соответствует 1 единице на каждые 52,63 доллара на счете.

Если в уравнении (5.14) использовать данные из столбца «Результат», тогда переменная S равна 100. В этом случае мы не вычитаем значение Y (арифметическое математическое ожидание базового инструмента минус его текущая цена) из U при определении переменной Z(T, U - Y), и получаем оптимальное f около 1,9, что соответствует 1 единице на каждые 52,63 доллара на счете, так как

100 /1,9=52,63.

Если вычесть значение Y в выражении Z(T, U - Y), являющемся элементом уравнения (5.14), мы получим математическое ожидание по базовому инструменту, равное его текущему значению, и поэтому f не будет оптимальным. Тем не менее нам следует вычесть значение Y в Z(T, U - Y) для того, чтобы соответствовать расчетам цен опционов, а также формуле <пут-колл> паритета.

Если мы будем использовать уравнение (3.30) вместо уравнения (5.14), тогда из каждого значения U в (5.21а) и (5.216) следует вычесть значение Y, то есть надо вычесть Y из каждого P&L, что опять же создает ситуацию, когда нет положительного математического ожидания, и поэтому нет оптимального значения f.

Статья размещена в рубрике: Математика управления капиталом



 

Главная Софт Литература Читайте на сайте Советы новичкам Контакты

Copyright © 2007 fx-trader.ru