Главная | Новости FX CLUB | Торговые условия | Торговые платформы | Обучение трейдингу
О компании
Торговые условия
Открыть демо-счет
Открыть реальный счет
Ввод средств на счет
Вывод средств со счета
Торговая платформа
  Торговые платформы
Платформа Libertex
Платформа MetaTrader4™
Платформа Rumus
  Аналитика
Видеообзор рынков
Видео от FX CLUB
Аналитика Forex
Экономический календарь
  Обучающие материалы
Обучение Forex
Статьи форекс
Статьи forex











 





Поиск информации по сайту:
Пользовательского поиска

метод поиска ассоциированных вероятностей

Так как теперь у нас есть метод поиска ассоциированных вероятностей для стандартных значений Х при данном наборе значений параметров, мы можем найти оптимальное f. Процедура в точности совпадает с той, которая применяется для поиска оптимального f при нормальном распределении. Единственное отличие состоит в том, что мы рассчитываем столбец ассоциированных вероятностей другим способом.

В нашем примере с 232 сделками значения параметров, которые получаются при самом низком значении статистики К-С, составляют 0,02, 2,76, О и 1,78 для LOC, SCALE, SKEW и KURT соответственно. Мы получили эти значения параметров, используя процедуру оптимизации, описанную в данной главе. Статистика К-С == 0,0835529 (это означает, что в своей наихудшей точке два распределения удалены на 8,35529%) при уровне значимости 7,8384%. Рисунок 4-10 показывает функцию распределения для тех значений параметров, которые наилучшим образом подходят для наших 232 сделок.

Если мы возьмем полученные параметры и найдем оптимальное f по этому распределению, ограничивая распределение +3 и -3 сигма, используя 100 равноотстоящих точек данных, то получим f= 0,206, или 1 контракт на каждые 23 783,17 доллара. Сравните это с эмпирическим методом, который покажет, что оптимальный рост достигается при 1 контракте на каждые 7918,04 доллара на балансе счета. Этот результат мы получаем, если ограничиваем распределение 3 сигма с каждой стороны от среднего.

В действительности, в эмпирическом потоке сделок у нас был проигрыш наихудшего случая 2,96 сигма и выигрыш наилучшего случая 6,94 сигма. Теперь, если мы вернемся и ограничим распределение 2,96 сигма слева от среднего и 6,94 сигма справа (и на этот раз будем использовать 300 равноотстоящих точек данных), то получим оптимальное f = 0,954, или 1 контракт на каждые

5062,71 доллара на балансе счета. Почему оно отличается от эмпирического оптимального f= 7918,04?

Проблема состоит в «грубости» фактического распределения. Вспомните, что уровень значимости наших наилучшим образом подходящих параметров был только 7,8384%. Давайте возьмем распределение 232 сделок и поместим в 12 ячеек от -3 до +3 сигма.

Ячейки                Количество сделок

-3,0           -2,5      2

-2,5          -2,0      1

-2,0          -1,5      2

-1,5          -1,0      24

-1,0          -0,5      39

,sr„. -0,5   0,0       43

ь -' 0,0       0,5       69

0,5            1,0       38

1,0            1,5       7

1,5            2,0       2

2,0            2,5       0

2,5            3,0       2

характеристическое распределение

Отметьте, что на хвостах распределения находятся пробелы, т. е. области, или
ячейки, где нет эмпирических данных. Эти области сглаживаются, когда мы приспосабливаем наше регулируемое распределение к данным, и именно эти сглаженные области вызывают различие между параметрическим и эмпирическим оптимальным f. Почему же наше характеристическое распределение при всех возможностях регулировки его формы не очень хорошо приближено к фактическому распределению? Причина состоит в том, что наблюдаемое распределение имеет слишком много точек перегиба. Параболу можно направить ветвями вверх или вниз. Однако вдоль всей параболы направление вогнутости или выпуклости не изменяется. В точке перегиба направление вогнутости изменяется. Парабола                имеет                 0                 точек                 перегиба,

ноль точек перегиба
так как направление вогнутости никогда не изменяется. Объект, имеющий форму буквы S, лежащий на боку, имеет одну точку перегиба, т.е. точку, где вогнутость изменяется. Рисунок 4-11 показывает нормальное распределение. Отметьте, что в колоколообразной кривой, такой как нормальное распределение, есть две точки перегиба. В зависимости от значения SCALE наше регулируемое распределение может иметь ноль точек перегиба (если SCALE очень низкое) или две точки перегиба.

Статья размещена в рубрике: Математика управления капиталом



 

Главная Софт Литература Читайте на сайте Советы новичкам Контакты

Copyright © 2007 fx-trader.ru