Главная | Новости FX CLUB | Торговые условия | Торговые платформы | Обучение трейдингу
О компании
Торговые условия
Открыть демо-счет
Открыть реальный счет
Ввод средств на счет
Вывод средств со счета
Торговая платформа
  Торговые платформы
Платформа Libertex
Платформа MetaTrader4™
Платформа Rumus
  Аналитика
Видеообзор рынков
Видео от FX CLUB
Аналитика Forex
Экономический календарь
  Обучающие материалы
Обучение Forex
Статьи форекс
Статьи forex











 





Поиск информации по сайту:
Пользовательского поиска

Оценка оптимизированной системы на данных вне пределов выборки

Оценка оптимизированной системы на данных, взятых вне пределов выборки и ни разу не использованных при оптимизации, аналогична оценке неоптимизированной системы. В обоих случаях проводится один тест без подстройки параметров. В табл. 4- 1 показано применение статистики для оценки неоптимизированной системы. Там приведены результаты проверки на данных вне пределов выборки совместно с рядом статистических показателей. Помните, что в этом тесте использованы свежие данные, которые не применялись как основа для настройки параметров системы.

Параметры торговой модели уже были определены. Образец данных для оценки вне пределов выборки охватывает период с 1.01.1995 г. По 1.01.1997 г.; модель тестировалась на этих данных и совершала смоделированные сделки. Было проведено 47 сделок. Этот набор сделок можно считать выборкой сделок, т.е. частью популяции смоделированных сделок, которые система совершила бы по данным правилам в прошлом или будущем. Здесь возникает вопрос по поводу оценки показателя средней прибыли в сделке — могло ли данное значение быть достигнуто за счет чистой случайности? Чтобы найти ответ, потребуется статистическая оценка системы.

Чтобы начать оценку системы, для начала нужно рассчитать среднее в выборке для n сделок. Среднее здесь будет просто суммой прибылей/убытков, поделенной на n (в данном случае 47). Среднее составило $974,47 нем не требуются поправки на оптимизацию или множественные тесты. Система представляет собой модель торговли индексом S&P 500, основанную на лунном цикле, и была опубликована нами ранее (Katz, McCormick, июнь 1997).

Стандартное отклонение (изменчивость показателей прибылей/убытков) рассчитывается после этого вычитанием среднего из каждого результата, что дает 47 (n) отклонений. Каждое из значений отклонения возводится в квадрат, все квадраты складываются, сумма квадратов делится на n — 1 (в данном случае 46), квадратный корень от результата и будет стандартным отклонением выборки. На основе стандартного отклонения выборки вычисляется ожидаемое стандартное отклонение прибыли в сделке: стандартное отклонение (в данном случае $6091,10) делится на квадратный корень из n. В нашем случае ожидаемое стандартное отклонение составляет $888,48.

Чтобы определить вероятность случайного происхождения наблюдаемой прибыли, проводится простая проверка по критерию Стьюдента.

Поскольку прибыльность выборки сравнивается с нулевой прибыльностью, из среднего, вычисленного выше, вычитается ноль, и результат делится на стандартное отклонение выборки для получения значения критерия t , в данном случае— 1,0968. В конце концов оценивается вероятность получения столь большого t по чистой случайности. Для этого рассчитывается функция распределения t для данных показателей с количеством степеней свободы, равным n— 1 (или 46).

функция и плотность распределения
вероятностей

Рисунок 4- 1. функция и плотность распределения вероятностей для сделок в пределах выборки.

Статья размещена в рубрике: Анализ входов и выходов в сделки на финансовых рынках



 

Главная Софт Литература Читайте на сайте Советы новичкам Контакты

Copyright © 2007 fx-trader.ru