| |||||||
Главная
| Новости FX CLUB
| | |||||||
Поиск информации по сайту:
Пользовательского поиска
Множественная корреляция и множественная регрессия
Для решения задач моделирования показателей в операциях с производными инструментами, наряду с расчетами парной корреляции и регрессионного анализа, целесообразны расчеты множественных корреляции и регрессии, и особо выделяются поиски соответствующих измерителей в рядах динамики. При поиске меры и формы связи между данным признаком и несколькими признаками-факторами (множественная корреляция) считается необходимым (на первом шаге) предположительно определить, имеет ли место прямолинейная или криволинейная зависимость (сформулировать соответствующую гипотезу). В случае прямолинейной зависимости составляется соответствующее уравнение множественной регрессии, при решении которого способом наименьших квадратов вычисляются коэффициенты регрессии для каждого из признаков-факторов. При прямолинейной форме связи коэффициент множественной корреляции (совокупный коэффициент корреляции по некоторому числу факторов) может быть вычислен по формуле где Ry•xz – коэффициент множественной корреляции у по x,z; ryx, ryz, rxz – полные парные коэффициенты корреляции факторов-признаков у, x, z. В общем случае чем выше значение коэффициента множественной корреляции, тем лучше подобрано уравнение. Обычно при интерпретации расчетов используется величина R-квадрат (R2, коэффициент детерминации). Продолжение >>> Криволинейная зависимость |
|||||||
Главная Софт Литература Читайте на сайте Контакты Copyright © 2007 fx-trader.ru |